If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7d^2-5d-46=0
a = 7; b = -5; c = -46;
Δ = b2-4ac
Δ = -52-4·7·(-46)
Δ = 1313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{1313}}{2*7}=\frac{5-\sqrt{1313}}{14} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{1313}}{2*7}=\frac{5+\sqrt{1313}}{14} $
| 180=115+2r-5 | | 22y=18(y-2 | | 578+x=989 | | x+43=98 | | 2x=1400 | | 9x-(6x+5)=3x+5 | | ⅘(10m+30)=-3(m+3) | | ⅘(10m+30)=-3(m+3 | | 4(3r-4)=(r+9)+2 | | 13-v+3=(v+10) | | 9x-(3x+5)=3x+5 | | (3x+30)°=180 | | 6.9x+1=82 | | 4u+7=10u+37 | | n+61/8=-4 | | c-83/6=2 | | -3w/7=-12 | | C(x)=5x-25 | | 17+8s=73 | | P(x)=-5x+20 | | x=-5x+20 | | 6z-25=23 | | v-81/7=2 | | (8x-5)(6x+8)=0 | | -(p-39)=-38 | | -4x+3=12x-9 | | 0.04(5-s)=0.05(6-s | | 8s-23=41 | | 2/3=n-7/6 | | 8s-23=42 | | 34=6b | | 5.9g+3=2.9g+15 |